B. Tech. III(CH), Semester –V EIS: Elective Interdisciplinary Subjects (Group-1)[#]

applications	symes and m
Microbial growth	(12 Hours)
Characteristics and classification of biological matter; Introduction to metabol transport; Glycolysis; TCA cycle; Control of metabolism; Factors affect micro Growth kinetics: measurement of growth	ism; Nutrien
Bioreactors	(10 Hours)
Introduction to bioreactors; Batch and fed-batch bioreactors; Continuous	bioreactors
Bioreactor operation; Sterilization; Aeration; Sensors; Instrumentation.	
Bioseparations	(09
Hours)	
Biomass removal; Biomass disruption; Membrane based techniques; Extraction and Chromatography.	1; Adsorption
Industrial Processes	(06
Hours)	
Description of industrial processes; Process flow-sheeting; Process economics.	
(Total contact t	ime: 45 hours

REFERENCE:

- 1. S. Aiba, A.E. Humphrey, and N.F.Mills, "Biochemical Engineering", 2nd edition, Academic Press, New York, 1973.
- 2. J.E.Bailey, D.F. Ollis, "Biochemical Engineering Fundamentals", 2nd edition, McGraw Hill, 1986.
- 3. M.L. Shuler & F.Kargi, "Bioprocess Engineering: Basic concepts", Prentice Hall, 2001.
- 4. B. Atkinson," Biochemical Reacrtors", Pion Ltd., London, 1974.
- 5. D.L.Pyle, "Separation for biotechnology", Royal society of chemistry, Cambridge, 1994.

Principles of enzyme catalysis

CH 309: Bioprocess Engineering

Proteins as enzymes; Michaelis-Menten kinetics; Inhibition; Effect of various parameters; Immobilized enzymes: methods and mass transfer considerations: Industrial enzymes and its

(1 otal contact time: 45 hours)

3000

LTPC

(08 Hours)

B Tech I	II		
CH 309:	ENERGY	TECHN	OLOGY

• INTRODUCTION

Energy sources - conventional & non-conventional, different forms of energy, energy chain, energy demand, energy management, energy audit & conservation, types of fuels, thermodynamics and basic energy calculations, units & conversion factors.

• SOLID FUELS (COAL)

Rank of coal, composition of coal, analysis & properties of coal, Coal preparation, Clean Coal Technology, gasification of Coal.

• SOLAR ENERGY

Introduction, applications of solar energy, solar radiation & related terms, measurement of solar radiation, solar energy collectors, applications & advantages of various collectors, solar energy storage systems, Solar Thermal Energy conversion systems and power plants.

• WIND ENERGY

Basic principles, wind energy conversion, site selection, basic components of wind energy conversion systems (WECS), classification of WECS, wind energy collectors, applications of wind energy.

• ENERGY FROM BIOMASS

Introduction, biomass conversion technologies, biogas generation, factors affecting biogas generation, classification & types of biogas plants (including those used in India), thermal gasification of biomass, pyrolysis, alternative liquid fuels.

• GEOTHERMAL ENERGY

Introduction, applications of geothermal energy, Geothermal resource types, Classification and types of geothermal power plants.

• HYDRO ENERGY

Introduction, Merits and demerits, Energy conversion systems, Power plants.

• ENERGY FROM OCEANS

Energy from Tides, Methods of utilization of tidal energy, storage, components of tidal power plants, ocean waves, wave energy conversion devices.

• FUEL CELL

Introduction, types of fuel cells, Principle and operation of fuel cells, advantages & disadvantages, conversion efficiency, applications of fuel cells.

• HYDROGEN

Properties of Hydrogen, production of hydrogen via different methods, storage & transportation, safety & management.

• NUCLEAR ENERGY

(02 Hours) energy

(08 Hours)

(06 Hours)

(04 Hours)

(03 Hours)

(04 Hours)

(02 Hours)

(02 Hours)

(05 Hours)

(02 Hours)

(05 Hours)

L T P C 3 0 0 3

Fission, fuel for nuclear fission reactor, Nuclear Fuel Cycle, storage & transportation, different types of reactor, reactor control, nuclear reactor power plants, Nuclear waste management.

• URBAN WASTE TO ENERGY

(02 Hours)

Introduction, various processes, applications.

(Total Contact Hours: 45)

BOOKS RECOMMENDED:

- 1. Mathew S., Wind Energy-Fundamentals, Resource Analysis and Economics, Springer-Verlag Berlin Heidelberg 2006
- 2. Heinloth K., Energy Technologies: Renewable Energy, Springer-Verlag Berlin Heidelberg 2006.
- 3. Gasification, C. Higman, M. Burgt, Gulf Professional Publishing, 2003, Elsevier Science (USA).
- 4. Rao & Parulekar, Khanna Energy Technology Publications, New Delhi, 2007.
- 5. Begamudre R. D. Energy Conversion Systems, New Age International Ltd. 2000.
- 6. Twidell J. & Weir T. Renewable Energy Resources, 2nd Ed, Taylor & Francis, 2006.

Journals:

- 1. Applied Energy
- 2. Renewable Energy
- 3. Energy & Fuels
- 4. Energy Conversion & Management

B.	Tech. III (Chemical), Semester-VI	L 3	Т 0	Р 0	C 3
\underline{C}	H 322: Petroleum Refinery Engineering	3	1	2	5
•	INTRODUCTION Overall Definery Flow		(0)	2 Hours)
•					
•	(03 Hours)				
	Low-Boiling Products, Distillate Fuels, Heating Oils, Residual Fuel Oils and their	specifi	cation ar	nd	
	applications.	1			
•	REFINERY FEEDSTOCKS		(03	B Hours)	
	Crude Oil Properties, Composition of Petroleum, Crudes Suitable for Asphalt Man Distillation Curves like ASTM, TBP, EFV	ufactu	re, Crude	e	
•	CRUDE DISTILLATION		(04	Hours)	
	Desalting Crude Oils, Atmospheric Topping Unit, Vacuum Distillation, Auxiliary	Equipi	nent		
•	COKING AND THERMAL PROCESSES		(04	Hours)	
	Types, Properties, and Uses of Petroleum Coke, Process Description—Delayed Co Fluid Coking, Yields from Flexicoking and Fluid Coking, Visbreaking	king, l	Flexicoki	ing,	
•	CATALYTIC CRACKING		(04	Hours)	
	Fluidized-Bed Catalytic Cracking, Cracking Reactions, Cracking Catalysts, FCC F	eed Pr	etreating	, Process	
	Variables, Heat Recovery				
•	CATALYTIC HYDROCRACKING	C .	(04	Hours)	
	Hydrocracking Reactions, Feed Preparation, Hydrocracking Process, Hydrocracking Variables, Hydrocracking Vields	g Cata	alyst, Pro	ocess	
•	HVDROPROCESSING AND RESID PROCESSING		(0/	Houre)	
•	Composition of Vacuum Tower Bottoms, Processing Options, Hydroprocessing, E	knande	ed-Bed	r nour sj	
	Hydrocracking Processes, Moving-Bed Hydroprocessors, Solvent Extraction	1			
•	HYDROTREATING		(03	B Hours)	
	Hydrotreating Catalysts, Aromatics Reduction, Reactions, Process Variables, Cons Costs	tructio	on and O	perating	
•	CATALYTIC REFORMING AND ISOMERIZATION		(04	Hours)	
	Reactions, Feed Preparation, Catalytic Reforming Processes, Reforming Catalyst, I and Costs, Isomerization	Reacto	r Design	, Yields	
•	ALKYLATION AND POLYMERIZATION		(04	Hours)	
	Alkylation Reactions, Process Variables, Alkylation Feedstocks, Alkylation Produc	ets, Ca	talysts,		
	Hydrofluoric Acid Processes, Sulfuric Acid Alkylation Processes, Comparison of F Violds and Costs, Polymorization	roces	ses, Alky	lation	
•	DODUCT RI ENDINC		(02		
•	Reid Vapor Pressure Octane Blending Blending for Other Properties		(03	nours	
•	SUPPORTING PROCESSES		(03	Hours)	
•	Hydrogen Production and Purification, Gas Processing Unit, Acid Gas Removal, S	ulfur F	Recovery	Processe	S
	(Total conta	ct tir	ne: 45	hours)	
BO	DOKS RECOMMENDED:				
	1. James H. Gary, Glenn E. Handwerk, "Petroleum Refining Techno Economics", Fourth Edition,	ology	and		
	2. W. L. Nelson, <i>Petroleum Refinery Engineering</i> , 4th Ed. (McGraw	/-Hill	Book		
	Company, new rork, 1930), p. 114.		···· ~''	а ·	

3. David S. J. Jones, Peter R. Pujado, "Handbook of Petroleum Processing", Springer Publication, 2008.

.

4. Rao B.K.B., "Modern Petroleum Refining Processes", Oxford & IBH Publishing Co. Pvt. Ltd., New Delhi, 2002, (4th Ed).

L T P C 3 0 0 3

CH 314: CLEANER TECHNOLOGIES IN CHEMICAL PROCESS INDUSTRIES (EIS-II)

•	INRODUCTION TO CLEANER TECHNOLOGY	(03 Hour	rs)
	Industrial impacts on the environment, Concept of sustainable devel	opment,	
	Cleaner technology and cleaner production, Basis, necessity and s	scope of	
	cleaner production/cleaner technologies in survival of chemical	process	
	industries.	-	

- CLEANER PRODUCTION TOOLS (05 Hours) C.P. tools, techniques, methodology, Assessment of cleaner production.
- **GREEN CHEMISTRY AND GREEN ENGINEERING** (10 Hours) Principles and concepts of green chemistry and green engineering, green chemistry metrics, Environmentally benign solvents, design of cleaner production/green processes.
- INHERENTLY SAFER DESIGN (06 Hours) Industrial process safety strategies, Hazard Prevention by CT Alternatives, HAZOP, HAZAN, Inherent safety concepts and strategies.
- LIFE CYCLE ASSESSMENT (06 Hours) ISO 14000, Life cycle analysis of products and processes, LCA methodologies
- ENERGY AND ENVIRONMENTAL AUDIT (05 Hours) Energy conservation, Energy audit and its methodology, Environmental auditing
- WASTE MINIMIZATION CIRCLES (04 Hours) Concept, Need and benefits, Methodology, Techniques and barriers
- INDUSTRIAL CASE STUDIES (06 Hours) Typical case studies from industrial sectors viz. Petrochemicals, Polymers, Chloralkali, Dyes, Pharmaceuticals, Pesticides, Food processing, Textile and Specialty Chemicals.

(Total contact time: 45 hours)

BOOKS RECOMMENDED:

- 1. Gujarat Cleaner Production Centre, "Cleaner Production and its Application to Industries", GCPC, Gandhinagar, Gujarat, 2010.
- 2. Lennart Nilsson, Per Olof Persson, Lars Ryden, Siarhei Darozhka, Audrone Zaliauskiene "Cleaner Production: Technologies and Tools for Resource Efficient Production", Baltic University Press, 2007.
- 3. United Nations Environment Programme "Cleaner Production A Training Resource Package", UNEP/Earthprint, 1996.
- 4. David T. Allen, David R. Shonnard, "Green Engineering: Environmentally Conscious Design of Chemical Processes", Pearson Education, 2001.
- 5. Concepción Jiménez-González, David J.C. Constable, "Green Chemistry and Engineering: A Practical Design Approach", John Wiley & Sons, 2011.
- 6. Kenneth L. Mulholland "Identification of Cleaner Production Improvement Opportunities", John Wiley & Sons, 2006.

- 7. Center for Chemical Process Safety (CCPS) "Inherently Safer Chemical Processes: A Life Cycle Approach", John Wiley & Sons, 2010.
- 8. Asian Productivity Organization, "Working Manual on Energy Auditing in Industries", APO, Japan, 2008.